Response of unconfined turbidity current to deep‐water fold and thrust belt topography: Orthogonal incidence on solitary and segmented folds

Hydraulic response of turbidity current to a typical fold topography

Abstract

Sea‐floor topography of deep‐water folds is widely considered to have a major impact on turbidity currents and their depositional systems, but understanding the flow response to such features was limited mainly to conceptual notions inspired by small‐scale laboratory experiments. High‐resolution three‐dimensional numerical experiments can compensate for the lack of natural‐scale flow observations. The present study combines numerical modelling of thrusts with fault‐propagation folds by Trishear3D software with computational fluid dynamics simulations of a natural‐scale unconfined turbidity current by MassFlow‐3D™ software. The study reveals the hydraulic and depositional responses of a turbidity current (ca 50 m thick) to typical topographic features that it might encounter in an orthogonal incidence on a sea‐floor deep‐water fold and thrust belt. The supercritical current (ca 10 m sec−1) decelerated and thickened due to the hydraulic jump on the fold backlimb counter‐slope, where a reverse overflow formed through current self‐reflection and a reverse underflow was issued by backward squeezing of a dense near‐bed sediment load. The reverse flows were re‐feeding sediment to the parental current, reducing its waning rate and extending its runout. The low‐efficiency current, carrying sand and silt, outran a downslope distance of >17 km with only modest deposition (<0·2 m) beyond the fold. Most of the flow volume diverted sideways along the backlimb to surround the fold and spread further downslope, with some overspill across the fold and another hydraulic jump at the forelimb toe. In the case of a segmented fold, a large part of the flow went downslope through the segment boundary. Preferential deposition (0·2 to 1·8 m) occurred on the fold backlimb and directly upslope, and on the forelimb slope in the case of a smaller fold. The spatial patterns of sand entrapment revealed by the study may serve as guidelines for assessing the influence of substrate folds on turbiditic sedimentation in a basin.

Publication
Sedimentology
Zhiyuan Ge
Zhiyuan Ge
Associate professor

My research focuses on tectono-stratigraphy of salt-bearing basins.

Related